
الوحدة 05: تطور جملة ميكانيكية

دراسة حركة السقـــــوط الشاقولي لجسم صلــــب

kg	كتلة الجسم	m		، يخضع لها الجسم الصلب	القوى التي
m/s^2	$\mathrm{g}=10~N.kg^{-1}$ الجاذبية الأرضية	g			
kg/m^3	الكتلة الحجمية للمائع (هواء أو سائل)	$ ho_f$	P = m g		قوة الثقل
m^3	حجم الجسم الصلب المتحرك (يساوي حجم المائع المنزاح)	V_{S}	$\Pi = \rho$	$f V_s g$	دافعة أرخميدس
/	ثابت الاحتكاك	k	$f = k\mathcal{V}$	حالة السرعة ضعيفة	قوة الاحتكاك
$m. s^{-1}$	سوعة الجسم	ν	$f = k\mathcal{V}^2$	حالة السرعة كبيرة	$f = kv^n$

لسقــــوط الحقيقــــى لجســم صـــــلب في الهـــــواء

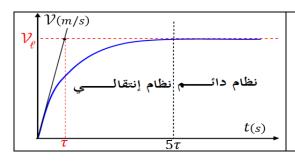
• القوى الخارجية المؤثرة على الجملة : الثقل (\vec{P}) ، دافعة أرخميدس $(\vec{\Pi})$ ، وقوة الاحتكاك (\vec{P}) .

$$\overrightarrow{P}+\overrightarrow{\Pi}+\overrightarrow{f}=ma_G$$
 فنجد $\Sigma \overrightarrow{F}=ma_G$: فنجد $P-\Pi-f=ma_Z$ فنجد على المحور $\Sigma \overrightarrow{F}=ma_G$: $\Sigma \overrightarrow{F}=ma_G$. $\Sigma \overrightarrow{F}=ma_G$. $\Sigma \overrightarrow{F}=ma_G$.

$$\frac{\text{mg} - \rho_{air} \, \mathbf{v}_{air} \, \mathbf{g} - f = \mathbf{m} \frac{dV}{dt}}{\frac{\text{mg} - \rho_{air} \, \mathbf{v}_{air} \, \mathbf{g}}{\mathbf{m}}} = \frac{1}{\mathbf{m}} f + \frac{dV}{dt}$$

- إن الشكل النهائي للمعادلة التفاضلية له علاقة بشكل قيمة قوة الاحتكاك

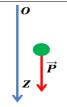
$f=kv^2$ من أجل	f=kv من أجل		
$rac{k}{r} \mathcal{V}^2 + rac{\mathrm{dV}}{r} = rac{\mathrm{mg} - ho_{air} \mathrm{v}_{air} \mathrm{g}}{r}$: المعادلة التفاصلية	$rac{k}{2}v + rac{\mathrm{dV}}{2} = rac{\mathrm{mg} - ho_{air}\mathrm{v}_{air}\mathrm{g}}{2}$: المعادلة التفاضلية		
m dt m	m dt m		

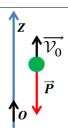

$$\mathcal{V} = \mathcal{V}_\ell (1 - e^{-t/ au})$$
 المعادلة التفاضلية هي معادلة من الدرجة الأولى حلها من الشكل -

في النظام الدائم أين يكون $v_\ell = a = rac{dV}{dt} = 0$ وتبلغ السرعة قيمتها الحدية v_ℓ يمكن التعويض في المعادلة التفاضلية لايجاد $a = rac{dV}{dt} = 0$

${v_\ell}^2$ الطريقة 2 لايجاد	${\mathcal V_{\ell}}^2$ الطريقة 1 لايجاد	\mathcal{V}_{arrho} الطريقة 2 لايجاد	${\cal V}_{\ell}$ الطريقة 1 لايجاد
$\frac{k}{m} \mathcal{V}_{\ell}^{2} = \frac{mg - \rho_{air} v_{air} g}{m}$	$\frac{k}{m}v_{\ell}^{2} = \frac{mg - \rho_{air} v_{air} g}{m}$	$\frac{k}{m}\mathcal{V}_{\ell} = \frac{mg - \rho_{air} v_{air} g}{m}$	$\frac{k}{m}\mathcal{V}_{\ell} = \frac{mg - \rho_{air} v_{air} g}{m}$
$\frac{k}{m} \mathcal{V}_{\ell}^{2} = \frac{mg}{m} - \frac{\rho_{air} v_{s} g}{m}$	$kV_{\ell}^{2} = mg - \rho_{air} v_{air} g$ $kV_{\ell}^{2} = \rho_{s} v_{s}g - \rho_{air}v_{air}g$	ν _ℓ −	$kV_{\ell} = \text{mg} - \rho_{air} \text{v}_{air} \text{g}$ $kV_{\ell} = \rho_{s} \text{v}_{s} \text{g} - \rho_{air} \text{v}_{air} \text{g}$

عجم المائع (المنزاح) هو نفسه حجم الجملة (S) بعنی $v_{air}=v_{s}$ ومنه يصبح:

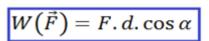

		- uii - 3 G : (-)	.) (()) () (1)
$\frac{k}{m} \mathcal{V}_{\ell}^{2} = g(1 - \frac{\rho_{air}}{\rho_{s}})$	$kV_{\ell}^{2} = \rho_{s} \mathbf{v}_{s} \mathbf{g} - \rho_{air} \mathbf{v}_{s} \mathbf{g}$	$\frac{k}{m}V_{\ell} = g(1 - \frac{\rho_{air}}{c})$	$k\mathcal{V}_{\ell} = \rho_s \mathbf{v}_s \mathbf{g} - \rho_{air} \mathbf{v}_s \mathbf{g}$
m ρ_s	$kV_{\ell}^2 = v_s g \left(\rho_s - \rho_{air}\right)$	$m \sim \rho_s$	$kV_{\ell} = v_s g (\rho_s - \rho_{air})$
$v_{\ell} = \sqrt{\frac{\text{mg}}{k} \left(1 - \frac{\rho_{air}}{\rho_s}\right)}$	$v_{\ell} = \sqrt{\frac{v_s g}{k} (\rho_s - \rho_{air})}$	$\mathcal{V}_{\ell} = \frac{\mathrm{mg}}{k} (1 - \frac{\rho_{air}}{\rho_{s}})$	$\boldsymbol{\mathcal{V}_{\ell}} = \frac{\mathbf{v}_{s}\mathbf{g}}{k} \left(\rho_{s} - \rho_{air} \right)$

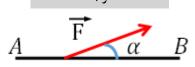

- $u=\mathcal{V}_\ell(1-e^{-t/ au})$ حل المعادلة التفاضلية هو من الشكل u=f(t) عيث u=f(t) هو الزمن المميز للسقوط وهندسيا يحسب من خلال تقاطع مماس البيان u=f(t) مع المستقيم المقارب في النظام الدائم. u=t
 - . $ho_{\scriptscriptstyle S}$ هي السرعة الحدية وتزداد بزيادة الكتلة الحجمية للجسم الصلب \mathcal{V}_{ℓ}
 - . t=5 au لما t=5 au . تبلغ الحركة النظام الدائم (ثبات السوعة)

وط الحرر لجسم صلب في الهرواء (إهمال قوى الاحتكاك و دافعة أرخميدس)

قانون السقوط الحر إن السقوط في الفراغ غير مرتبط بالكتلة في غياب مقاومة الهواء ،كل الاجسام تسقط بالتسارع نفسه ، مهماكان شكلها أو حجمها.

- $\sum \vec{F} = ma_G$
- بتطبيق القانون الثاني لنيوتن
- الجملة المدروسة: الجسم الصلب المتحرك
- مرجع الدراسة : سطحي أرضى نعتبره غاليليا
- $\vec{P} = ma_G$ $P=mg=ma_{z}$: (OZ) بتحليل العلاقة الشعاعية على المحور
- القوى الخارجية المؤثرة على الجملة : الثقل $(ec{P})$
- $\frac{dV}{dt} = a = g$
 - المعادلة التفاضلية هي من الدرجة الأولى
- كون $ec{\mathbf{g}}$ بجوار الارض ثابت (في المنحى والجهة والشدة) ، يكون أثنات أيضا وعليه حركة جسم الصلب في سقوط شاقولي هي مستقيم متغيرة بانتظام.
 - في حالة القذف بسرعة ابتدائية شاقولية نحو الأعلى (أو الأسفل)، وعملا بالشروط الابتدائية المختارة يمكن أن نحدد المعدلات الزمنية للحركة.




شعاع الموضع (الفاصلة)	شعاع السرعة اللحظية	شعاع التسارع
$\vec{r} \begin{cases} x = 0 \\ y = 0 \end{cases}$ $z = -\frac{1}{2}gt^2 + V_0t + z_0$	$\vec{V} \begin{cases} V_x = 0 \\ V_y = 0 \\ V_z = -gt + V_0 \end{cases}$	$\vec{a} \begin{cases} a_x = 0 \\ a_y = 0 \\ a_z = -g \end{cases}$

عند t=0 يكون $z=z_0$ هي الفاصلة الابتدائية ، وليس بالضرورة الابتدائية أن تكون هي الفاصلة التي انطلق منها المتحرك).

قوانين خاصة بالسقوط الحر

$h = \frac{1}{2}gt^2 + V_0t$	h المسافة المقطوعة (الارتفاع) حيث t هي المدة الزمنية لقطع المسافة h
$V_B - V_A = gt$	$(\ B$ و A وكانت في لحظة ما إذا كانت سرعة الجسم في لحظة ما هي V_A وكانت في لحظة بعدها t V_B هي المدة المستغرقة بين
$V_B^2 - V_A^2 = 2gh$	(AB) العلاقة بين السرعة والمسافة (AB) العلاقة بين السرعة والمسافة (AB) العلاقة بين السرعة والمسافة الخسم في لحظة ما هي (AB)

1- عمل قوة ثـــابــ

$\alpha = 0^0$	$0 < \alpha < 90$	$\alpha = 90^{\circ}$	$90 < \alpha < 180$	$\alpha = 180^{0}$
$\cos \alpha = 1$	$\cos \alpha > 0$	$\cos \alpha = 0$	$\cos \alpha < 0$	$\cos \alpha = -1$
A F B	A F B	$A \uparrow F B$	A F B	A F B
W = F.d	W > 0	W = 0	W < 0	W = -F.d
العمال محرك	العمـــل محــــرك	العمـــل معـــدوم	العمــــل مقـــــاوم	العمــــل مقــــاوم

- $\mathrm{W_{AB}}ig(ec{P}ig) = \mathrm{mg}(Z_A Z_B) = {}^+_- m \mathrm{g}(h_A h_B)$ عمل قوة الثقل –2

 - $W_{
 m AB}ig(ec Pig) = +m {
 m g}(h_A h_B)$: عمل الثقل محرك الجسم نازل -
 - $W_{
 m AB}(ec{P}) = -m {
 m g}(h_A h_B)$: عمل الثقل مقاوم الجسم صاعد : عمل الثقل مقاوم
 - $\mathrm{W}_{\mathrm{AB}}(ec{f}) = -f$. AB عمل قوة الاحــــتكاك -3

 - $E_C = \frac{1}{2} \,\mathrm{m} \mathcal{V}^2 \,(jeul)$
- 4- الــطاقة الحركية

- $E_{nn} = mgz = mgh (jeul)$
- 5- الـطاقة الكامنة الثقالية للجملة (جسم + الأرض)
- الطاقة النهائية = الطاقة الابتدائية + الطاقة المكتسبة الطاقة المقدمة
- 6- مسبدأ إنحفاظ الطاقة
- الطاقة النهائية = الطاقة الابتدائية
- في حــالة الجملة معزولة طاقويا

- $P(watt) = \frac{E(jeul)}{E(jeul)}$
- 7- إستطاعة التحويل هي الطاقة المحولة خلال ثانية واحدة